Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(x, f(s(s(y)), f(z, w))) → f(s(x), f(y, f(s(z), w)))
L(f(s(s(y)), f(z, w))) → L(f(s(0), f(y, f(s(z), w))))
f(x, f(s(s(y)), nil)) → f(s(x), f(y, f(s(0), nil)))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f(x, f(s(s(y)), f(z, w))) → f(s(x), f(y, f(s(z), w)))
L(f(s(s(y)), f(z, w))) → L(f(s(0), f(y, f(s(z), w))))
f(x, f(s(s(y)), nil)) → f(s(x), f(y, f(s(0), nil)))
Q is empty.
Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
L1(f(s(s(y)), f(z, w))) → F(s(z), w)
L1(f(s(s(y)), f(z, w))) → F(y, f(s(z), w))
F(x, f(s(s(y)), nil)) → F(s(0), nil)
F(x, f(s(s(y)), f(z, w))) → F(s(z), w)
F(x, f(s(s(y)), nil)) → F(s(x), f(y, f(s(0), nil)))
L1(f(s(s(y)), f(z, w))) → L1(f(s(0), f(y, f(s(z), w))))
F(x, f(s(s(y)), f(z, w))) → F(s(x), f(y, f(s(z), w)))
F(x, f(s(s(y)), f(z, w))) → F(y, f(s(z), w))
L1(f(s(s(y)), f(z, w))) → F(s(0), f(y, f(s(z), w)))
F(x, f(s(s(y)), nil)) → F(y, f(s(0), nil))
The TRS R consists of the following rules:
f(x, f(s(s(y)), f(z, w))) → f(s(x), f(y, f(s(z), w)))
L(f(s(s(y)), f(z, w))) → L(f(s(0), f(y, f(s(z), w))))
f(x, f(s(s(y)), nil)) → f(s(x), f(y, f(s(0), nil)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
Q DP problem:
The TRS P consists of the following rules:
L1(f(s(s(y)), f(z, w))) → F(s(z), w)
L1(f(s(s(y)), f(z, w))) → F(y, f(s(z), w))
F(x, f(s(s(y)), nil)) → F(s(0), nil)
F(x, f(s(s(y)), f(z, w))) → F(s(z), w)
F(x, f(s(s(y)), nil)) → F(s(x), f(y, f(s(0), nil)))
L1(f(s(s(y)), f(z, w))) → L1(f(s(0), f(y, f(s(z), w))))
F(x, f(s(s(y)), f(z, w))) → F(s(x), f(y, f(s(z), w)))
F(x, f(s(s(y)), f(z, w))) → F(y, f(s(z), w))
L1(f(s(s(y)), f(z, w))) → F(s(0), f(y, f(s(z), w)))
F(x, f(s(s(y)), nil)) → F(y, f(s(0), nil))
The TRS R consists of the following rules:
f(x, f(s(s(y)), f(z, w))) → f(s(x), f(y, f(s(z), w)))
L(f(s(s(y)), f(z, w))) → L(f(s(0), f(y, f(s(z), w))))
f(x, f(s(s(y)), nil)) → f(s(x), f(y, f(s(0), nil)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
L1(f(s(s(y)), f(z, w))) → F(y, f(s(z), w))
L1(f(s(s(y)), f(z, w))) → F(s(z), w)
F(x, f(s(s(y)), f(z, w))) → F(s(z), w)
F(x, f(s(s(y)), nil)) → F(s(0), nil)
F(x, f(s(s(y)), f(z, w))) → F(s(x), f(y, f(s(z), w)))
L1(f(s(s(y)), f(z, w))) → L1(f(s(0), f(y, f(s(z), w))))
F(x, f(s(s(y)), nil)) → F(s(x), f(y, f(s(0), nil)))
F(x, f(s(s(y)), f(z, w))) → F(y, f(s(z), w))
L1(f(s(s(y)), f(z, w))) → F(s(0), f(y, f(s(z), w)))
F(x, f(s(s(y)), nil)) → F(y, f(s(0), nil))
The TRS R consists of the following rules:
f(x, f(s(s(y)), f(z, w))) → f(s(x), f(y, f(s(z), w)))
L(f(s(s(y)), f(z, w))) → L(f(s(0), f(y, f(s(z), w))))
f(x, f(s(s(y)), nil)) → f(s(x), f(y, f(s(0), nil)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 2 SCCs with 5 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F(x, f(s(s(y)), f(z, w))) → F(s(z), w)
F(x, f(s(s(y)), nil)) → F(s(x), f(y, f(s(0), nil)))
F(x, f(s(s(y)), f(z, w))) → F(s(x), f(y, f(s(z), w)))
F(x, f(s(s(y)), f(z, w))) → F(y, f(s(z), w))
The TRS R consists of the following rules:
f(x, f(s(s(y)), f(z, w))) → f(s(x), f(y, f(s(z), w)))
L(f(s(s(y)), f(z, w))) → L(f(s(0), f(y, f(s(z), w))))
f(x, f(s(s(y)), nil)) → f(s(x), f(y, f(s(0), nil)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
L1(f(s(s(y)), f(z, w))) → L1(f(s(0), f(y, f(s(z), w))))
The TRS R consists of the following rules:
f(x, f(s(s(y)), f(z, w))) → f(s(x), f(y, f(s(z), w)))
L(f(s(s(y)), f(z, w))) → L(f(s(0), f(y, f(s(z), w))))
f(x, f(s(s(y)), nil)) → f(s(x), f(y, f(s(0), nil)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.